Determinanten

Symmetrische Gruppe 6.1

Definition: Eine bijektive Abbildung von einer Menge X auf sich selbst heisst eine *Permutation von X*.

Proposition-Definition: Die Menge aller Permutationen der Menge $\{1, \ldots, n\}$ zusammen mit der Komposition von Abbildungen und der identischen Abbildung id als neutrales Element ist eine Gruppe, genannt die symmetrische Gruppe vom Grad n. Bezeichnig Sn

Ben.,
$$S_n \times S_n \longrightarrow S_n$$
 (6, T_i the Got walldefind arraying (906) ot = g_0 (6, T_i)

id $g_0 = g_0$

id $g_0 = g_0$

id $g_0 = g_0$

Elemente von S_n bezeichnet man üblicherweise mit kleinen griechischen Buchstaben und schreibt ihre Operation klammernlos in der Form $\sigma: i \mapsto \sigma i$.

Proposition: Es gilt $|S_n| = n!$.

Ben.: Wertetabelle
$$1/2$$
 ... - n

$$|G7||G2|$$

$$|T||T$$
Amould Noglishteits: $n.(n-1)...$ $1 = n!$

Definition: Ein Paar (i, j) mit $1 \le i \le j \le n$ und $\underline{\sigma i} > \sigma j$ heisst ein Fehlstand von σ . Die Zahl

$$\operatorname{sgn}(\sigma) := (-1)^{\operatorname{Anzahl}}$$
 Fehlstände von σ

heisst das Signum oder die Signatur oder das Vorzeichen von σ . Eine Permutation mit $sgn(\sigma) = 1$ heisst *gerade*, eine mit $sgn(\sigma) = -1$ heisst *ungerade*.

$$\prod_{1 \leqslant i < j \leqslant n} (\sigma j - \sigma i) = \operatorname{sgn}(\sigma) \cdot \prod_{1 \leqslant i < j \leqslant n} (j - i).$$

Generale, eine mit
$$\operatorname{sgn}(\sigma) = -1$$
 heisst $\operatorname{ungerade}$.

Lemma: Für jedes $\sigma \in S_n$ gilt

$$\prod_{1 \leq i < j \leq n} (\sigma j - \sigma i) = \operatorname{sgn}(\sigma) \cdot \prod_{1 \leq i < j \leq n} (j - i).$$

Ben:

Like like = $\prod_{1 \leq i < j \leq n} (\sigma j - \sigma i) = \operatorname{sgn}(\sigma) \cdot \prod_{1 \leq i < j \leq n} (\sigma j - \sigma i) = \operatorname{sgn}(\sigma) \cdot \prod_{1 \leq i < j \leq n} (\sigma j - \sigma i) = \operatorname{sgn}(\sigma) \cdot \prod_{1 \leq i < j \leq n} (\sigma j - \sigma i) = \operatorname{sgn}(\sigma) \cdot \prod_{1 \leq i < j \leq n} (\sigma j - \sigma i) = \operatorname{sgn}(\sigma) \cdot \prod_{1 \leq i < j \leq n} (\sigma j - \sigma i) = \operatorname{sgn}(\sigma) \cdot \operatorname{sgn}(\sigma)$

Proposition: Für alle $\sigma, \tau \in S_n$ gilt:

$$\operatorname{sgn}(\sigma \circ \tau) = \operatorname{sgn}(\sigma) \cdot \operatorname{sgn}(\tau)$$

$$\operatorname{sgn}(\sigma \circ \tau) = \operatorname{sgn}(\sigma) \cdot \operatorname{sgn}(\tau)$$

$$\operatorname{sgn}(\sigma \circ \tau) = \operatorname{sgn}(\sigma) \cdot \operatorname{sgn}(\tau)$$

$$\frac{\operatorname{sgn}(\operatorname{id}) = 1}{\operatorname{gn}(\sigma \circ \tau) = \operatorname{sgn}(\sigma) \cdot \operatorname{sgn}(\tau)}$$
$$\overline{\operatorname{sgn}(\sigma^{-1}) = \operatorname{sgn}(\sigma)}$$

Das bedeutet, dass die Abbildung sgn: $S_n \to \{\pm 1\}$ ein Gruppenhomomorphismus ist.

Ben id by O tallstile to syn (id) = (-1) = 1. TI (ETj-ETi) TI (ETj-ETI) Squ (GoT) = [2] TT (j-i) TT(===i) TT(==i) $\frac{1}{1} \frac{1}{6j-6i} = \frac{1}{1} \frac{1}{1$ un {ti, tj} al, Also squ (FOT) = squ (5). squ (E). 5,02=ig = sgn (5"). sgn (6) = sgn (5"0 5) = sgn (id) = 1 = $sgn(\sigma') = sgn(\sigma)^2 = sgn(\sigma) da(-1)^2 = -1$

7

Beispiel: Eine Permutation, die zwei verschiedene Ziffern vertauscht und alle übrigen Ziffern festlässt, heisst *Transposition*. Jede Transposition hat Signum -1.

heisst Transposition. Jede Transposition hat Signum -1.

Ber, Six Ti = j and Tj = i and n' < j.

Tellstate an $T = \{(i,k) \mid i < k < j\} \cup \{(i,j) \} \cup \{(k,j) \mid i < k < j\}$.

Hetelstate an $T = \{(j-i-1) + 1 + (j-i-1) \equiv 1 \text{ and } 2$.

Beispiel: Eine Permutation, die $k \ge 1$ verschiedene Ziffern zyklisch vertauscht und alle übrigen Ziffern festlässt, hat Signum $(-1)^{k-1}$.

ben: Indika iller k. $k=1: 5=id \implies sgn(5)=7=(-1)^{7-1}$. $k>1: 5=id \implies sgn(5)=7=(-1)^{7-1}$. $k>1: 5=id \implies sgn(5)=7=(-1)^{7-1}$.

Let $1: 5=id \implies sgn(5)=7=(-1)^{7-1}$.

Let $1: 5=id \implies sgn(5)=7=(-1)^{7-1}$. $1: 5=id \implies sgn(5)=7=(-1)^{7-1}$.

Definition: Für jedes $\sigma \in S_n$ betrachte die $n \times n$ -Matrix

$$P_{\sigma} := (\delta_{i,\sigma j})_{1 \leqslant i,j \leqslant n}.$$

Proposition: Die Matrix P_{σ} ist eine Permutationsmatrix. Umgekehrt ist jede $n \times n$ -Permutationsmatrix gleich P_{σ} für genau ein $\sigma \in S_n$. Ausserdem gilt für alle $\sigma, \tau \in S_n$

$$(\mathcal{K}) \left[P_{\sigma\tau} = P_{\sigma} \cdot P_{\tau}. \right]$$

Das bedeutet, dass $\sigma \mapsto P_{\sigma}$ einen Gruppenisomorphismus von S_n auf die Gruppe aller $n \times n$ -Permutationsmatrizer induziert.

Ben (*):

$$P_{\overline{b}} \cdot P_{\overline{t}} = \left(\delta_{i,\overline{c}i} \right)_{i,\overline{b}} \cdot \left(\delta_{i,\overline{c}k} \right)_{j,k} = \left(\sum_{j=1}^{n} \delta_{i,\overline{c}j} \cdot \delta_{j,\overline{c}k} \right)_{i,k}$$

$$= \left(\delta_{i,\overline{c}\overline{c}k} \right)_{i,k} = P_{\overline{c}\overline{c}}$$

$$qed.$$